Properties

Label 98304.m.4.K
Order $ 2^{13} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^3.C_4^2.D_{12}$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 27 & 26 \\ 18 & 9 \end{array}\right), \left(\begin{array}{rr} 3 & 29 \\ 20 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 19 & 16 \\ 0 & 27 \end{array}\right), \left(\begin{array}{rr} 0 & 7 \\ 9 & 31 \end{array}\right), \left(\begin{array}{rr} 25 & 16 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 24 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 13 & 28 \\ 16 & 21 \end{array}\right), \left(\begin{array}{rr} 5 & 16 \\ 20 & 13 \end{array}\right), \left(\begin{array}{rr} 29 & 12 \\ 8 & 21 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_4^4.C_4^2:S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_5\wr C_2^2:C_4$, of order \(3145728\)\(\medspace = 2^{20} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_4^4.C_4^2:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed