Properties

Label 98304.m.4.F
Order $ 2^{13} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^4.(C_8\times A_4)$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 27 & 26 \\ 18 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 8 \\ 24 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 24 & 31 \\ 25 & 7 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 24 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 19 & 16 \\ 0 & 27 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 8 & 25 \end{array}\right), \left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 29 & 24 \\ 4 & 21 \end{array}\right), \left(\begin{array}{rr} 29 & 12 \\ 8 & 21 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_4^4.C_4^2:S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_4^2.(C_2^4\times A_4).C_2^6.C_2^6.C_2$
$W$$C_8^2:(C_2\times D_6)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_4^4.C_4^2:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed