Properties

Label 98304.m.24.D
Order $ 2^{12} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_8^2.D_8$
Order: \(4096\)\(\medspace = 2^{12} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 3 & 14 \\ 30 & 21 \end{array}\right), \left(\begin{array}{rr} 23 & 8 \\ 24 & 7 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 21 & 16 \\ 4 & 29 \end{array}\right), \left(\begin{array}{rr} 13 & 28 \\ 8 & 5 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_4^4.C_4^2:S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \)
$\operatorname{Aut}(H)$ Group of order \(77309411328\)\(\medspace = 2^{33} \cdot 3^{2} \)
$W$$C_2^4.S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_4^4.C_4^2:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed