Subgroup ($H$) information
Description: | $C_2^2\times C_8^2.D_8$ |
Order: | \(4096\)\(\medspace = 2^{12} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$\left(\begin{array}{rr}
3 & 14 \\
30 & 21
\end{array}\right), \left(\begin{array}{rr}
23 & 8 \\
24 & 7
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
21 & 16 \\
4 & 29
\end{array}\right), \left(\begin{array}{rr}
13 & 28 \\
8 & 5
\end{array}\right)$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_4^4.C_4^2:S_4$ |
Order: | \(98304\)\(\medspace = 2^{15} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $D_{12}$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \) |
$\operatorname{Aut}(H)$ | Group of order \(77309411328\)\(\medspace = 2^{33} \cdot 3^{2} \) |
$W$ | $C_2^4.S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_4^4.C_4^2:S_4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |