Properties

Label 98304.m.16.N
Order $ 2^{11} \cdot 3 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.C_4^2.(C_4\times C_{12})$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 29 & 16 \\ 0 & 29 \end{array}\right), \left(\begin{array}{rr} 19 & 16 \\ 0 & 27 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 29 & 24 \\ 20 & 21 \end{array}\right), \left(\begin{array}{rr} 5 & 12 \\ 16 & 13 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 24 & 31 \\ 25 & 7 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 8 & 25 \end{array}\right), \left(\begin{array}{rr} 25 & 24 \\ 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, monomial, or almost simple has not been computed.

Ambient group ($G$) information

Description: $C_4^4.C_4^2:S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_4:C_2$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_8^2.C_6.C_2^5.C_2^6$
$W$$C_8^2:(C_2\times D_6)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_4^4.C_4^2:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed