Subgroup ($H$) information
| Description: | $C_2^3.C_4^2.(C_4\times C_{12})$ |
| Order: | \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
17 & 8 \\
24 & 25
\end{array}\right), \left(\begin{array}{rr}
13 & 8 \\
8 & 5
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
16 & 17
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 17
\end{array}\right), \left(\begin{array}{rr}
29 & 24 \\
20 & 21
\end{array}\right), \left(\begin{array}{rr}
5 & 12 \\
16 & 13
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
24 & 31 \\
25 & 7
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
8 & 25
\end{array}\right), \left(\begin{array}{rr}
25 & 24 \\
0 & 9
\end{array}\right)$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, monomial, or almost simple has not been computed.
Ambient group ($G$) information
| Description: | $C_4^4.C_4^2:S_4$ |
| Order: | \(98304\)\(\medspace = 2^{15} \cdot 3 \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times D_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
| Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $C_8^2.C_6.C_2^5.C_2^6$ |
| $W$ | $C_8^2:(C_2\times D_6)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | $C_4^4.C_4^2:S_4$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |