Properties

Label 9828.a.351.a1.a1
Order $ 2^{2} \cdot 7 $
Index $ 3^{3} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(351\)\(\medspace = 3^{3} \cdot 13 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left[ \left(\begin{array}{rr} 13 & 9 \\ 17 & 0 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 23 & 23 \\ 21 & 10 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 14 & 19 \\ 1 & 17 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $\PSL(2,27)$
Order: \(9828\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7 \cdot 13 \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,27).C_6$, of order \(58968\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7 \cdot 13 \)
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{14}$
Normal closure:$\PSL(2,27)$
Core:$C_1$
Minimal over-subgroups:$\PSL(2,27)$
Maximal under-subgroups:$C_{14}$$D_7$$D_7$$C_2^2$

Other information

Number of subgroups in this conjugacy class$351$
Möbius function$-1$
Projective image$\PSL(2,27)$