Properties

Label 972.340.3.d1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_{36}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a, d^{3}, bc^{3}d, c, a^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $(C_9\times C_{18}).S_3$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_9:C_{36}$
Normal closure:$(C_9\times C_{18}).S_3$
Core:$C_9:C_{18}$
Minimal over-subgroups:$(C_9\times C_{18}).S_3$
Maximal under-subgroups:$C_9:C_{18}$$C_3:C_{36}$$C_9:C_{12}$
Autjugate subgroups:972.340.3.d1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$\He_3.S_3$