Properties

Label 96800.c.121.a1
Order $ 2^{5} \cdot 5^{2} $
Index $ 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:C_{10}^2$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(121\)\(\medspace = 11^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a^{5}, b^{2}c^{3}, d^{55}, a^{2}d^{60}, bc^{3}d^{180}, d^{110}, d^{44}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{11}^2:C_8:C_{10}^2$
Order: \(96800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times C_{55}).C_2^3.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_2^5.C_2^4.S_5$
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_8:C_{10}^2$
Normal closure:$C_{11}^2:C_8:C_{10}^2$
Core:$C_{20}$
Minimal over-subgroups:$C_{11}^2:C_8:C_{10}^2$
Maximal under-subgroups:$\SD_{16}\times C_5^2$$C_4:C_{10}^2$$C_4.C_{10}^2$$C_{10}\times C_{40}$$C_{10}\times \SD_{16}$$C_{10}\times \SD_{16}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2\times D_{11}^2:C_{10}$