Properties

Label 9604.m.98.b1
Order $ 2 \cdot 7^{2} $
Index $ 2 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{14}$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a^{14}, bd^{4}, a^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_7\wr C_4$
Order: \(9604\)\(\medspace = 2^{2} \cdot 7^{4} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_8.C_6^3.C_2$
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\times C_{14}$
Normalizer:$C_7:C_{28}$
Normal closure:$C_7^2\wr C_2$
Core:$C_7^2$
Minimal over-subgroups:$D_7\times C_7^2$$C_7:C_{28}$
Maximal under-subgroups:$C_7^2$$C_{14}$$C_{14}$$C_{14}$

Other information

Number of subgroups in this autjugacy class$49$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_7^3:C_4$