Properties

Label 960.9542.24.v1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_4$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b, d^{2}, c^{12}, c^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_5\times D_4$
Normalizer:$C_{20}.C_2^4$
Normal closure:$C_5\times D_{12}$
Core:$C_{20}$
Minimal over-subgroups:$C_5\times D_{12}$$D_4\times C_{10}$$D_4\times C_{10}$$D_4:C_{10}$$C_5:D_8$$C_5:\SD_{16}$$C_5:\SD_{16}$$C_5:\SD_{16}$
Maximal under-subgroups:$C_{20}$$C_2\times C_{10}$$D_4$
Autjugate subgroups:960.9542.24.v1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$8$
Projective image$D_{30}:C_2^3$