Properties

Label 960.9542.12.i1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:D_5$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{3}, d^{5}, c^{12}, bc^{3}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^2\times D_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4.D_{10}$
Normal closure:$D_{12}.D_{10}$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$D_6.D_{10}$$D_4.D_{10}$
Maximal under-subgroups:$C_5\times D_4$$C_5:D_4$$C_{10}:C_4$$C_5:D_4$$C_{10}:C_4$$C_4\times D_5$$C_5:Q_8$$D_4:C_2$
Autjugate subgroups:960.9542.12.i1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_{30}:C_2^3$