Properties

Label 960.5544.480.a1
Order $ 2 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(2\)
Generators: $b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_4^2\times C_{60}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_4\times C_{60}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_2\times C_4\times C_2^6.S_4$
Outer Automorphisms: $C_2\times C_4\times C_2^6.S_4$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times C_2^9.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(98304\)\(\medspace = 2^{15} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^2\times C_{60}$
Normalizer:$C_4^2\times C_{60}$
Minimal over-subgroups:$C_{10}$$C_6$$C_4$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$7$
Möbius function$0$
Projective image$C_2\times C_4\times C_{60}$