Properties

Label 960.5544.1.a1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2\times C_{60}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a, c^{12}, b^{2}, c^{15}, a^{2}, c^{30}, b, c^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Fitting subgroup, the radical, a direct factor, a Hall subgroup, and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_4^2\times C_{60}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times C_2^9.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2\times C_4\times C_2^9.\PSL(2,7)$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^2\times C_{60}$
Normalizer:$C_4^2\times C_{60}$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_4\times C_{60}$$C_4^2\times C_{20}$$C_4^2\times C_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_1$