Properties

Label 960.4626.6.b1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4\times C_{20}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ab^{2}c^{5}, b^{2}, c^{30}, c^{12}, b, a^{2}b^{2}c^{30}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{60}.C_4^2$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^2.C_2^6)$
$\operatorname{Aut}(H)$ $C_4\times C_2^6:S_4$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\operatorname{res}(S)$$C_2^5.C_2^5$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_{20}$
Normalizer:$C_4^2:C_{20}$
Normal closure:$C_{30}:C_4^2$
Core:$C_2^2\times C_{20}$
Minimal over-subgroups:$C_{30}:C_4^2$$C_4^2:C_{20}$
Maximal under-subgroups:$C_2^2\times C_{20}$$C_4\times C_{20}$$C_2^2\times C_{20}$$C_2\times C_4^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$D_6$