Properties

Label 960.4031.5.a1
Order $ 2^{6} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_{12}):D_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{3}, b^{2}, b, d^{10}, d^{5}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):D_{20}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^9.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^6.C_2^6$, of order \(4096\)\(\medspace = 2^{12} \)
$\operatorname{res}(S)$$C_2^6.C_2^6$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$(C_2\times C_{12}):D_4$
Normal closure:$(C_2\times C_{12}):D_{20}$
Core:$C_2\times C_4\times C_{12}$
Minimal over-subgroups:$(C_2\times C_{12}):D_{20}$
Maximal under-subgroups:$C_2\times C_4\times C_{12}$$C_2^3:C_{12}$$C_{12}:C_2^3$$C_2\times C_4:C_{12}$$C_2^3.C_2^3$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2\times D_{10}$