Properties

Label 960.387.6.c1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{80}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Generators: $a^{2}, b^{8}, c^{3}, b^{2}, b, b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{60}.D_8$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_4.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_4^2.C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^2\times C_4^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{80}$
Normalizer:$C_{16}.C_{20}$
Normal closure:$C_6:C_{80}$
Core:$C_2\times C_{40}$
Minimal over-subgroups:$C_6:C_{80}$$C_{16}.C_{20}$
Maximal under-subgroups:$C_2\times C_{40}$$C_{80}$$C_{80}$$C_2\times C_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3:D_8$