Subgroup ($H$) information
Description: | $C_2^2:C_8$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$a, c^{15}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_3\times C_2^3.D_{20}$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_3\times D_5$ |
Order: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Automorphism Group: | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5:(C_2^5\times C_4\times C_2\times D_4)$ |
$\operatorname{Aut}(H)$ | $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Möbius function | $-5$ |
Projective image | $C_6\times D_{20}$ |