Properties

Label 960.296.12.c1.d1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:C_8$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ac^{3}, a^{2}bc^{30}, a^{4}, b, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_{20}):C_{24}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^9.C_2^3)$
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$(C_2\times C_{20}):C_{24}$
Complements:$C_{12}$ $C_{12}$ $C_{12}$ $C_{12}$
Minimal over-subgroups:$C_{10}:C_{24}$$C_{20}.C_2^3$
Maximal under-subgroups:$C_2\times C_{20}$$C_5:C_8$$C_2\times C_8$
Autjugate subgroups:960.296.12.c1.a1960.296.12.c1.b1960.296.12.c1.c1

Other information

Möbius function$0$
Projective image$D_5\times C_{12}$