Subgroup ($H$) information
Description: | $C_2^3.D_{10}$ |
Order: | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Generators: |
$a, b^{4}, c^{9}, a^{2}, b^{10}c^{3}, c^{6}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_{60}.C_4^2$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5:(C_2^4.C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $F_5\times C_2^5:D_4$, of order \(5120\)\(\medspace = 2^{10} \cdot 5 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_{10}.C_2^6$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | $C_3\times D_{20}$ |