Subgroup ($H$) information
Description: | $C_{60}.C_4^2$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Index: | $1$ |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Generators: |
$a, b^{10}c^{3}, c^{6}, c^{4}, c^{9}, b^{4}, b^{5}, a^{2}$
|
Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_{60}.C_4^2$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5:(C_2^4.C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_5:(C_2^4.C_2^6.C_2)$ |
$W$ | $D_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
Centralizer: | $C_2\times C_{12}$ | ||||
Normalizer: | $C_{60}.C_4^2$ | ||||
Complements: | $C_1$ | ||||
Maximal under-subgroups: | $C_2\times C_4\times C_{60}$ | $(C_2\times C_{20}):C_{12}$ | $C_{30}:\OD_{16}$ | $C_{20}.C_4^2$ | $C_4^2:C_{12}$ |
Other information
Möbius function | $1$ |
Projective image | $D_{20}$ |