Properties

Label 960.295.1.a1.a1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{60}.C_4^2$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: $1$
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a, b^{10}c^{3}, c^{6}, c^{4}, c^{9}, b^{4}, b^{5}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_4^2$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_5:(C_2^4.C_2^6.C_2)$
$W$$D_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_{60}.C_4^2$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_4\times C_{60}$$(C_2\times C_{20}):C_{12}$$C_{30}:\OD_{16}$$C_{20}.C_4^2$$C_4^2:C_{12}$

Other information

Möbius function$1$
Projective image$D_{20}$