Subgroup ($H$) information
Description: | $C_2\times C_{12}$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$a^{2}d^{15}, b, d^{20}, b^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $(C_2\times D_{60}):C_4$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_{20}$ |
Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Automorphism Group: | $D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
Outer Automorphisms: | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{15}:(C_2\times C_4\times C_2^2.C_2^6)$ |
$\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $D_{30}:C_4$ |