Properties

Label 960.2821.2.d1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_{20}):C_{12}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac, b^{2}, d^{15}, d^{20}, b, d^{6}, a^{2}d^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times D_{60}):C_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2\times C_4\times C_2^2.C_2^6)$
$\operatorname{Aut}(H)$ $C_5:(C_2\times C_4\times C_2^6.C_2^2)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$(C_2\times D_{60}):C_4$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$(C_2\times D_{60}):C_4$
Maximal under-subgroups:$C_2^2\times C_{60}$$C_{30}.D_4$$C_{30}.D_4$$C_{20}:C_{12}$$C_{20}:C_{12}$$C_2^3.D_{10}$$C_4^2:C_6$

Other information

Möbius function$-1$
Projective image$D_{30}:C_4$