Properties

Label 960.2624.5.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(5\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{2}, c^{3}, b^{3}, b^{4}, d^{5}, b^{6}c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times D_{60}):C_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $D_4^2:C_2^2\times S_3$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$D_4^2:C_2^2\times S_3$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4^2:D_6$
Normal closure:$(C_2\times D_{60}):C_4$
Core:$C_6:\OD_{16}$
Minimal over-subgroups:$(C_2\times D_{60}):C_4$
Maximal under-subgroups:$C_6:\OD_{16}$$D_{12}:C_2^2$$C_4^2:C_6$$D_{12}:C_4$$D_{12}:C_4$$D_{12}:C_4$$D_{12}:C_4$$C_4^2:C_2^2$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$C_{10}:D_{12}$