Properties

Label 960.258.5.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_8$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(5\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, b^{4}, c^{45}, b, c^{30}, c^{40}, b^{6}c^{45}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_{40}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_2^3\times D_4^2$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$C_2^3\times D_4^2$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{12}.D_8$
Normal closure:$C_{12}.D_{40}$
Core:$C_4:C_{24}$
Minimal over-subgroups:$C_{12}.D_{40}$
Maximal under-subgroups:$C_4:C_{24}$$C_{12}:Q_8$$C_4:C_{24}$$C_4.D_8$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$D_{10}:C_4$