Subgroup ($H$) information
Description: | $A_5$ |
Order: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$\langle(9,10)(11,12), (10,12,13)\rangle$
|
Derived length: | $0$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a direct factor, nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Ambient group ($G$) information
Description: | $C_2^4\times A_5$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $1$ |
The ambient group is nonabelian, an A-group, and nonsolvable.
Quotient group ($Q$) structure
Description: | $C_2^4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(2\) |
Automorphism Group: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Outer Automorphisms: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_5\times A_8$, of order \(2419200\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$W$ | $A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Related subgroups
Centralizer: | $C_2^4$ | ||
Normalizer: | $C_2^4\times A_5$ | ||
Complements: | $C_2^4$ $C_2^4$ $C_2^4$ | ||
Minimal over-subgroups: | $C_2\times A_5$ | ||
Maximal under-subgroups: | $A_4$ | $D_5$ | $S_3$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $64$ |
Projective image | $C_2^4\times A_5$ |