Properties

Label 960.11356.60.f1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(2\)
Generators: $\langle(1,2)(3,4)(5,6)(7,8)(9,10)(11,13), (1,3)(2,4), (1,4)(2,3)(5,8)(6,7), (1,2)(3,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^4\times A_5$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times A_8$, of order \(2419200\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$C_2^3:\GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^6$
Normalizer:$C_2^6$
Normal closure:$C_2^4\times A_5$
Core:$C_2^3$
Minimal over-subgroups:$C_2^2\times D_{10}$$C_2^2\times D_6$$C_2^5$$C_2^5$
Maximal under-subgroups:$C_2^3$$C_2^3$

Other information

Number of subgroups in this autjugacy class$225$
Number of conjugacy classes in this autjugacy class$15$
Möbius function$0$
Projective image$C_2\times A_5$