Properties

Label 960.11100.60.k1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 14 & 45 \\ 75 & 71 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 51 & 70 \\ 25 & 51 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_{20}.S_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_8:C_2^2$
Normal closure:$C_{20}.S_4$
Core:$C_4$
Minimal over-subgroups:$D_{20}:C_2$$D_4:C_2^2$$D_8:C_2$$D_8:C_2$
Maximal under-subgroups:$D_4$$C_2\times C_4$$C_2\times C_4$$D_4$$Q_8$
Autjugate subgroups:960.11100.60.k1.b1960.11100.60.k1.c1960.11100.60.k1.d1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function not computed
Projective image not computed