Subgroup ($H$) information
| Description: | $C_{20}.S_4$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Index: | \(2\) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
14 & 45 \\
75 & 71
\end{array}\right), \left(\begin{array}{rr}
51 & 70 \\
25 & 51
\end{array}\right), \left(\begin{array}{rr}
61 & 80 \\
80 & 6
\end{array}\right), \left(\begin{array}{rr}
1 & 68 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
51 & 15 \\
25 & 51
\end{array}\right), \left(\begin{array}{rr}
16 & 0 \\
0 & 16
\end{array}\right), \left(\begin{array}{rr}
81 & 0 \\
0 & 21
\end{array}\right)$
|
| Derived length: | $4$ |
The subgroup is normal, maximal, a direct factor, nonabelian, and solvable.
Ambient group ($G$) information
| Description: | $C_2\times C_{20}.S_4$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times A_4).C_2^4.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\card{W}$ | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Möbius function | not computed |
| Projective image | not computed |