Properties

Label 960.11100.2.d1.d1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}.S_4$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 51 & 30 \\ 55 & 34 \end{array}\right), \left(\begin{array}{rr} 51 & 70 \\ 25 & 51 \end{array}\right), \left(\begin{array}{rr} 61 & 80 \\ 80 & 6 \end{array}\right), \left(\begin{array}{rr} 1 & 68 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 34 & 15 \\ 25 & 34 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 16 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 81 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is normal, maximal, a direct factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_2\times C_{20}.S_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\card{W}$\(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times C_{20}.S_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_{20}.S_4$
Maximal under-subgroups:$\SL(2,3):C_{10}$$C_5:\GL(2,3)$$C_{10}.S_4$$C_{20}.D_4$$C_4\times D_{15}$$\GL(2,3):C_2$
Autjugate subgroups:960.11100.2.d1.a1960.11100.2.d1.b1960.11100.2.d1.c1

Other information

Möbius function not computed
Projective image not computed