Properties

Label 960.10981.5.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3):C_2^2$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(5\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, e^{15}, ce^{15}, b^{3}, e^{10}, d, b^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, a Hall subgroup, and solvable.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\GL(2,3):C_2^2$
Normal closure:$\GL(2,3):D_{10}$
Core:$\GL(2,3):C_2$
Minimal over-subgroups:$\GL(2,3):D_{10}$
Maximal under-subgroups:$\GL(2,3):C_2$$D_4.A_4$$\GL(2,3):C_2$$C_2\times \GL(2,3)$$C_2\times \GL(2,3)$$\GL(2,3):C_2$$\GL(2,3):C_2$$D_8:C_2^2$$S_3\times D_4$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$D_{10}\times S_4$