Properties

Label 960.10958.60.p1.d1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ac^{3}e^{15}, b$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_8:C_2^3$
Normal closure:$\GL(2,3):D_5$
Core:$C_2$
Minimal over-subgroups:$D_{40}$$C_2\times D_8$$D_8:C_2$$D_8:C_2$
Maximal under-subgroups:$D_4$$D_4$$C_8$
Autjugate subgroups:960.10958.60.p1.a1960.10958.60.p1.b1960.10958.60.p1.c1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function not computed
Projective image not computed