Subgroup ($H$) information
| Description: | $C_8:D_{10}$ |
| Order: | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Generators: |
$ae^{15}, e^{4}, c^{3}e^{15}, de^{5}, be^{15}, e^{10}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $\GL(2,3):D_{10}$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^2\times D_5\times A_4).C_2^5$ |
| $\operatorname{Aut}(H)$ | $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| $\card{W}$ | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |