Properties

Label 960.10958.12.r1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{20}:C_2$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ab, d, e^{10}, c^{3}e^{15}, e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\card{W}$\(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{40}:C_2^3$
Normal closure:$Q_8:D_{10}$
Core:$C_5:C_4$
Minimal over-subgroups:$Q_8:D_{10}$$C_8:D_{10}$$C_8:D_{10}$
Maximal under-subgroups:$C_4\times D_5$$C_4\times D_5$$D_{20}$$D_{20}$$C_5\times Q_8$$D_4:C_2$
Autjugate subgroups:960.10958.12.r1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed