Subgroup ($H$) information
Description: | $C_4^2:C_2$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(3\) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a, b, c^{3}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $(C_2\times C_4).D_6$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6\times C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^2\wr C_3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^6$, of order \(64\)\(\medspace = 2^{6} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $C_2\times D_6$ |