Properties

Label 95040.a.66.a1.b1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_6:C_2$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(4,12)(5,11)(6,10), (1,9,6,5,10,3,2,8,4,7)(11,12)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, almost simple, nonsolvable, and rational.

Ambient group ($G$) information

Description: $M_{12}$
Order: \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_6:C_2$
Normal closure:$M_{12}$
Core:$C_1$
Minimal over-subgroups:$M_{12}$
Maximal under-subgroups:$\PGL(2,9)$$A_6.C_2$$S_6$$F_9:C_2$$C_2\times F_5$$D_8:C_2$
Autjugate subgroups:95040.a.66.a1.a1

Other information

Number of subgroups in this conjugacy class$66$
Möbius function$-1$
Projective image$M_{12}$