Properties

Label 95040.a.1320.a1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times A_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4,12)(2,11,10)(3,8,9)(5,7,6), (1,9)(2,7)(3,4)(5,10)(6,11)(8,12), (1,4)(2,11)(3,9)(6,7), (2,7,9)(3,11,6)(5,8,10), (1,7)(2,9)(3,11)(4,6)(5,12)(8,10)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $M_{12}$
Order: \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$S_3\times A_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times A_4$
Normal closure:$M_{12}$
Core:$C_1$
Minimal over-subgroups:$M_{12}$
Maximal under-subgroups:$C_3\times A_4$$C_2\times A_4$$C_2\times D_6$$C_3\times S_3$

Other information

Number of subgroups in this conjugacy class$1320$
Möbius function$-1$
Projective image$M_{12}$