Properties

Label 945.8.1.a1.a1
Order $ 3^{3} \cdot 5 \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{35}:\He_3$
Order: \(945\)\(\medspace = 3^{3} \cdot 5 \cdot 7 \)
Index: $1$
Exponent: \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \)
Generators: $a, c^{63}, b, c^{70}, c^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 3$, and metabelian.

Ambient group ($G$) information

Description: $C_{35}:\He_3$
Order: \(945\)\(\medspace = 3^{3} \cdot 5 \cdot 7 \)
Exponent: \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 3$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times \He_3:C_2\times F_7$
$\operatorname{Aut}(H)$ $C_4\times \He_3:C_2\times F_7$
$W$$C_{21}:C_3$, of order \(63\)\(\medspace = 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_{35}:\He_3$
Complements:$C_1$
Maximal under-subgroups:$C_3\times C_{105}$$C_{105}:C_3$$C_{105}:C_3$$C_{105}:C_3$$C_7:\He_3$$C_5\times \He_3$

Other information

Möbius function$1$
Projective image$C_{21}:C_3$