Properties

Label 945.7.7.a1.a1
Order $ 3^{3} \cdot 5 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_{15}$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(7\)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Generators: $a, c^{21}, b^{3}, b$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{105}.C_3^2$
Order: \(945\)\(\medspace = 3^{3} \cdot 5 \cdot 7 \)
Exponent: \(315\)\(\medspace = 3^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 3$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.C_3^3.C_4.C_2$, of order \(4536\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_4\times \He_3$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_9:C_{15}$
Normal closure:$C_{105}.C_3^2$
Core:$C_3\times C_{15}$
Minimal over-subgroups:$C_{105}.C_3^2$
Maximal under-subgroups:$C_3\times C_{15}$$C_{45}$$C_{45}$$C_{45}$$C_9:C_3$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$C_{21}:C_3$