Properties

Label 94248.a.15708.a1.a1
Order $ 2 \cdot 3 $
Index $ 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(15708\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{23562}, b^{15708}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{11781}:Q_8$
Order: \(94248\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(47124\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{102}\times D_{77}$
Order: \(15708\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(7854\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 17 \)
Automorphism Group: $C_{77}.C_{240}.C_2^4$
Outer Automorphisms: $C_2^3\times C_{240}$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(3548160\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed