Properties

Label 94248.a
Order \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3^{2} \cdot 17 \)
$\card{Z(G)}$ \( 2 \cdot 3^{2} \cdot 17 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \cdot 3^{2} \cdot 5 \)
Perm deg. $52$
Trans deg. $94248$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 52 | (2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52), (1,2,4,6,7,5,3)(8,10,11,15)(9,12,14,13)(16,17,18,19,20,21,22,23,24)(25,26,28,30,32,34,35,33,31,29,27)(36,38,40,42,44,46,48,50,52,37,39,41,43,45,47,49,51) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52), (1,2,4,6,7,5,3)(8,10,11,15)(9,12,14,13)(16,17,18,19,20,21,22,23,24)(25,26,28,30,32,34,35,33,31,29,27)(36,38,40,42,44,46,48,50,52,37,39,41,43,45,47,49,51) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)', '(1,2,4,6,7,5,3)(8,10,11,15)(9,12,14,13)(16,17,18,19,20,21,22,23,24)(25,26,28,30,32,34,35,33,31,29,27)(36,38,40,42,44,46,48,50,52,37,39,41,43,45,47,49,51)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11816649444987855719426444033694037767236423670581839581524961504606992106753430943,94248)'); a = G.1; b = G.2;
 

Group information

Description:$C_{11781}:Q_8$
Order: \(94248\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(47124\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(3548160\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$ x 2, $C_7$, $C_{11}$, $C_{17}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 9 11 12 14 17 18 21 22 28 33 34 36 42 44 51 63 66 68 77 84 99 102 119 126 132 153 154 187 198 204 231 238 252 306 308 357 374 396 462 476 561 612 693 714 748 924 1071 1122 1309 1386 1428 1683 2142 2244 2618 2772 3366 3927 4284 5236 6732 7854 11781 15708 23562 47124
Elements 1 1 2 310 2 6 6 10 620 6 16 6 12 10 12 20 16 1860 12 20 32 36 20 4960 60 24 60 32 96 36 40 96 60 160 60 9920 120 96 72 96 120 192 160 120 120 192 320 29760 360 192 320 240 576 320 960 360 384 960 576 640 960 720 960 1920 1152 1920 1920 1920 5760 3840 5760 11520 94248
Conjugacy classes   1 1 2 3 2 3 6 5 6 3 16 6 6 5 6 10 16 18 6 10 32 18 10 48 30 12 30 32 48 18 20 96 30 80 30 96 60 48 36 96 60 96 80 60 60 96 160 288 180 96 160 120 288 160 480 180 192 480 288 320 480 360 480 960 576 960 960 960 2880 1920 2880 5760 24021
Divisions 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 84
Autjugacy classes 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 78

Minimal presentations

Permutation degree:$52$
Transitive degree:$94248$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid b^{47124}=1, a^{2}=b^{2002}, b^{a}=b^{307} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([8, -2, -2, -2, -3, -3, -7, -11, -17, 32032, 9825, 41, 29474, 66, 78595, 123, 294724, 156, 1060997, 381, 3386886, 670]); a,b := Explode([G.1, G.2]); AssignNames(~G, ["a", "b", "b2", "b4", "b12", "b36", "b252", "b2772"]);
 
Copy content gap:G := PcGroupCode(11816649444987855719426444033694037767236423670581839581524961504606992106753430943,94248); a := G.1; b := G.2;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11816649444987855719426444033694037767236423670581839581524961504606992106753430943,94248)'); a = G.1; b = G.2;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11816649444987855719426444033694037767236423670581839581524961504606992106753430943,94248)'); a = G.1; b = G.2;
 
Permutation group:Degree $52$ $\langle(2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 52 | (2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52), (1,2,4,6,7,5,3)(8,10,11,15)(9,12,14,13)(16,17,18,19,20,21,22,23,24)(25,26,28,30,32,34,35,33,31,29,27)(36,38,40,42,44,46,48,50,52,37,39,41,43,45,47,49,51) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52), (1,2,4,6,7,5,3)(8,10,11,15)(9,12,14,13)(16,17,18,19,20,21,22,23,24)(25,26,28,30,32,34,35,33,31,29,27)(36,38,40,42,44,46,48,50,52,37,39,41,43,45,47,49,51) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(8,9,11,14)(10,13,15,12)(16,17,18,19,20,21,22,23,24)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)', '(1,2,4,6,7,5,3)(8,10,11,15)(9,12,14,13)(16,17,18,19,20,21,22,23,24)(25,26,28,30,32,34,35,33,31,29,27)(36,38,40,42,44,46,48,50,52,37,39,41,43,45,47,49,51)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 65 & 216 \\ 141 & 242 \end{array}\right), \left(\begin{array}{rr} 155 & 258 \\ 113 & 155 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{307})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(307) | [[65, 216, 141, 242], [155, 258, 113, 155]] >;
 
Copy content gap:G := Group([[[ Z(307)^254, Z(307)^216 ], [ Z(307)^62, Z(307)^101 ]], [[ Z(307)^294, Z(307)^79 ], [ Z(307)^78, Z(307)^294 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(307), 2, 2) G = MatrixGroup([MS([[65, 216], [141, 242]]), MS([[155, 258], [113, 155]])])
 
Direct product: not computed
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_{6732}$ . $D_7$ $C_{612}$ . $D_{77}$ $C_{4284}$ . $D_{11}$ $C_{3366}$ . $D_{14}$ all 64

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{306} \simeq C_{2}^{2} \times C_{9} \times C_{17}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 1800 subgroups in 144 conjugacy classes, 90 normal (78 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{306}$ $G/Z \simeq$ $D_{154}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{154}$ $G/G' \simeq$ $C_2\times C_{306}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_6$ $G/\Phi \simeq$ $C_{102}\times D_{77}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{47124}$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{11781}:Q_8$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{7854}$ $G/\operatorname{soc} \simeq$ $C_2\times C_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $Q_8$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_9$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$

Subgroup diagram and profile

Series

Derived series $C_{11781}:Q_8$ $\rhd$ $C_{154}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{11781}:Q_8$ $\rhd$ $C_{77}:C_{612}$ $\rhd$ $C_{23562}$ $\rhd$ $C_{11781}$ $\rhd$ $C_{3927}$ $\rhd$ $C_{1309}$ $\rhd$ $C_{187}$ $\rhd$ $C_{17}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{11781}:Q_8$ $\rhd$ $C_{154}$ $\rhd$ $C_{77}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{306}$ $\lhd$ $C_{612}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $24021 \times 24021$ character table is not available for this group.

Rational character table

The $84 \times 84$ rational character table is not available for this group.