Properties

Label 93312.fb.16.A
Order $ 2^{3} \cdot 3^{6} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: not computed
Generators: $a^{2}b^{3}de^{5}f^{2}g, g^{2}, e^{3}, b^{2}defg^{3}, cd^{4}e^{5}f^{4}g^{4}, d^{3}, f^{2}g^{2}, d^{2}e^{2}f^{5}g^{4}, e^{2}g^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and metabelian (hence solvable). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_5^7.(C_2^3\times F_5)$, of order \(12500000\)\(\medspace = 2^{5} \cdot 5^{8} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2.C_3^3.D_6$
Normal closure:$C_6^4.C_3.C_6$
Core:$C_3^3:S_3$
Minimal over-subgroups:$C_6^4.C_3.C_6$$C_6^2.C_3^3.D_6$
Maximal under-subgroups:$C_6^2.C_3^4$$A_4\times C_3^3:C_6$$C_3^3:(C_6\times A_4)$$C_3^3:(C_6\times A_4)$$C_2\times C_3^4:D_6$$C_3^3:(S_3\times A_4)$$(C_3^2\times C_6^2):C_6$$\He_3^2:C_2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$