Properties

Label 93312.fb.108.CY
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_6\times A_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{2}b^{3}de^{2}f^{2}g^{4}, d^{3}e^{3}, e^{3}, f^{3}, cde^{2}f^{4}g^{4}, g^{2}, f^{2}g^{2}, g^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $S_4^2\times \AGL(2,3)$
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$(C_3\times A_4^2).D_6$
Normal closure:$C_6^4.C_3.C_6$
Core:$C_2^2\times C_6^2$
Minimal over-subgroups:$C_3:S_3\times A_4^2$$C_2^2\times (C_3\times C_6^2).C_6$$C_2^2\times (C_3^3\times A_4).C_2$$C_2^2\times (C_3\times C_6^2).C_6$$C_3:S_3\times \GL(2,\mathbb{Z}/4)$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$