Properties

Label 93312.ez.18.BZ
Order $ 2^{6} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ae^{4}f^{2}, e^{3}f^{3}, d^{4}, f^{2}g^{2}, f^{3}, b^{3}f^{4}g, b^{2}c^{3}d^{9}e^{4}f^{3}g^{2}, d^{6}e^{3}f^{3}, c^{3}d^{9}f^{3}, e^{2}f^{2}g$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4.(S_3\times D_6)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{16}.C_5^4.\SD_{16}$, of order \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$C_6^2.(D_6\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^2.(D_6\times S_4)$
Normal closure:$C_6^4.S_3^2$
Core:$C_3\times C_6^2:A_4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.(S_3\times D_6)$