Properties

Label 93312.ez.2.C
Order $ 2^{6} \cdot 3^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Index: \(2\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ae^{4}f^{2}, b^{3}f^{4}g, f^{3}, c^{2}, e^{2}g^{2}, d^{4}, d^{6}e^{3}f^{3}, b^{2}c^{3}d^{9}e^{4}f^{5}, e^{3}f^{3}, e^{4}f^{2}g, c^{3}d^{9}f^{3}, f^{2}g^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4.(S_3\times D_6)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{16}.C_5^4.\SD_{16}$, of order \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_5^3:C_{20}:D_4$, of order \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
$W$$C_6^4.(S_3\times D_6)$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.(S_3\times D_6)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.(S_3\times D_6)$