Properties

Label 93312.dy.72.DZ
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.S_3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{2}cd^{2}e^{4}f^{4}, c^{4}d^{2}fg^{2}, c^{2}d^{4}e^{5}f^{2}, f^{2}, b^{2}c^{2}d^{2}e^{2}f^{2}g, d^{3}, c^{3}, c^{3}f^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_6^2:D_6^2$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$C_6:S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6\times C_6^2:C_3.D_4$
Normal closure:$C_2^4.C_3^4:C_3.S_3$
Core:$C_3^2$
Minimal over-subgroups:$C_3\times (C_3^2\times A_4).C_6.C_2$$C_6\times C_6^2:C_3:C_4$$C_3\times C_6^2:C_3.D_4$$C_3\times C_6^2:C_3.D_4$
Maximal under-subgroups:$C_6^3:C_3$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed