Properties

Label 93312.dy.24.Q
Order $ 2^{4} \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: not computed
Generators: $a^{2}cd^{2}e^{4}f^{4}, d^{3}, e^{2}g, c^{4}d^{2}e^{4}fg, f^{2}, b^{2}c^{2}d^{2}e^{2}f^{2}g, c^{3}, c^{2}d^{4}e^{5}f^{2}, c^{3}f^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6\times (C_3\times C_6^2:C_3).D_4$
Normal closure:$C_2^4.C_3^4:C_3.S_3$
Core:$C_3^4$
Minimal over-subgroups:$C_6\times (C_3^2\times A_4).C_6.C_2$$C_3\times (C_3\times A_4).C_6^2.C_2$$C_3\times (C_3\times C_6^2:C_3).D_4$
Maximal under-subgroups:$C_6^3:C_3^2$$C_6^3.S_3$$C_6^3.S_3$$C_6^3.S_3$$C_6^3.C_6$$C_6^3.S_3$$C_6^3.S_3$$(C_3\times \He_3):C_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed