Properties

Label 93312.dy.16.B
Order $ 2^{3} \cdot 3^{6} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \He_3^2:C_4$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}e^{3}, f^{2}, c^{2}e^{2}g^{2}, e^{2}g, b^{3}, b^{2}c^{3}d^{5}e^{3}f^{5}g^{2}, c^{2}d^{4}e^{5}, c^{4}d^{2}e^{4}fg, a^{2}cd^{5}ef^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $\He_3:(C_3:S_3).A_4.C_2^4$
$W$$C_3^3:C_3^2:C_4$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times \He_3^2:C_4$
Normal closure:$C_2^5:(\He_3^2:C_4)$
Core:$C_3^3\times C_6$
Minimal over-subgroups:$C_2^5:(\He_3^2:C_4)$
Maximal under-subgroups:$C_2\times (C_3^4.C_3^2):C_2$$\He_3^2:C_4$$C_2\times C_3\wr C_4$$C_2\times C_3\wr C_4$$(C_6\times \He_3):C_4$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed