Properties

Label 92880.a.430._.B
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{108}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \)
Exponent: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Generators: $ab^{4945}, b^{30960}, b^{25800}, b^{11610}, b^{23220}, b^{24080}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{215}\times D_{216}$
Order: \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Exponent: \(46440\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{430}$
Order: \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \)
Exponent: \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \)
Automorphism Group: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2612736\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 7 \)
$\operatorname{Aut}(H)$ $D_{108}:C_{18}$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed