Properties

Label 92880.a
Order \( 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Exponent \( 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 5 \cdot 43 \)
$\card{Z(G)}$ \( 2 \cdot 5 \cdot 43 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{6} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 3^{3} \cdot 7 \)
Perm deg. $83$
Trans deg. $46440$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 83 | (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,32)(33,34), (1,2,4,6,8,10,12,14,16,18,20,22,24,26,27,25,23,21,19,17,15,13,11,9,7,5,3)(28,30,33,35,34,32,29,31)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,32)(33,34), (1,2,4,6,8,10,12,14,16,18,20,22,24,26,27,25,23,21,19,17,15,13,11,9,7,5,3)(28,30,33,35,34,32,29,31)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,32)(33,34)', '(1,2,4,6,8,10,12,14,16,18,20,22,24,26,27,25,23,21,19,17,15,13,11,9,7,5,3)(28,30,33,35,34,32,29,31)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1096951812441675889561543958029022806192386800727960228303521620920099157509397257716289539,92880)'); a = G.1; b = G.2;
 

Group information

Description:$C_{215}\times D_{216}$
Order: \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(46440\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2612736\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$ x 3, $C_5$, $C_{43}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 9 10 12 15 18 20 24 27 30 36 40 43 45 54 60 72 86 90 108 120 129 135 172 180 215 216 258 270 344 360 387 430 516 540 645 774 860 1032 1080 1161 1290 1548 1720 1935 2322 2580 3096 3870 4644 5160 5805 7740 9288 11610 15480 23220 46440
Elements 1 217 2 2 4 2 4 6 868 4 8 6 8 8 18 8 12 16 42 24 18 16 24 9114 24 36 32 84 72 84 48 168 72 84 72 168 96 252 36456 168 144 336 252 336 336 288 756 336 504 672 1008 756 672 1008 1008 1512 1344 3024 2016 3024 3024 4032 6048 12096 92880
Conjugacy classes   1 3 1 1 4 1 2 3 12 2 4 3 4 4 9 4 6 8 42 12 9 8 12 126 12 18 16 42 36 42 24 168 36 42 36 84 48 126 504 84 72 168 126 168 168 144 378 168 252 336 504 378 336 504 504 756 672 1512 1008 1512 1512 2016 3024 6048 23865
Divisions 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 72
Autjugacy classes 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 68

Minimal presentations

Permutation degree:$83$
Transitive degree:$46440$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid a^{2}=b^{46440}=1, b^{a}=b^{431} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -2, -2, -2, -3, -3, -3, -5, -43, 15517, 46, 46550, 74, 124131, 102, 310324, 175, 1117157, 212, 3910038, 249, 430]); a,b := Explode([G.1, G.2]); AssignNames(~G, ["a", "b", "b2", "b4", "b8", "b24", "b72", "b216", "b1080"]);
 
Copy content gap:G := PcGroupCode(1096951812441675889561543958029022806192386800727960228303521620920099157509397257716289539,92880); a := G.1; b := G.2;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1096951812441675889561543958029022806192386800727960228303521620920099157509397257716289539,92880)'); a = G.1; b = G.2;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1096951812441675889561543958029022806192386800727960228303521620920099157509397257716289539,92880)'); a = G.1; b = G.2;
 
Permutation group:Degree $83$ $\langle(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 83 | (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,32)(33,34), (1,2,4,6,8,10,12,14,16,18,20,22,24,26,27,25,23,21,19,17,15,13,11,9,7,5,3)(28,30,33,35,34,32,29,31)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,32)(33,34), (1,2,4,6,8,10,12,14,16,18,20,22,24,26,27,25,23,21,19,17,15,13,11,9,7,5,3)(28,30,33,35,34,32,29,31)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,32)(33,34)', '(1,2,4,6,8,10,12,14,16,18,20,22,24,26,27,25,23,21,19,17,15,13,11,9,7,5,3)(28,30,33,35,34,32,29,31)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 421 & 30 \\ 189 & 421 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 430 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{431})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(431) | [[421, 30, 189, 421], [1, 0, 0, 430]] >;
 
Copy content gap:G := Group([[[ Z(431)^347, Z(431)^412 ], [ Z(431)^411, Z(431)^347 ]], [[ Z(431)^0, 0*Z(431) ], [ 0*Z(431), Z(431)^215 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(431), 2, 2) G = MatrixGroup([MS([[421, 30], [189, 421]]), MS([[1, 0], [0, 430]])])
 
Direct product: not computed
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_{7740}$ . $D_6$ $C_{5160}$ . $D_9$ $C_{860}$ . $D_{54}$ $C_{645}$ . $D_{72}$ all 60

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{430} \simeq C_{2}^{2} \times C_{5} \times C_{43}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2464 subgroups in 176 conjugacy classes, 76 normal (68 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{430}$ $G/Z \simeq$ $D_{108}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{108}$ $G/G' \simeq$ $C_2\times C_{430}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_{36}$ $G/\Phi \simeq$ $S_3\times C_{430}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{46440}$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{215}\times D_{216}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{1290}$ $G/\operatorname{soc} \simeq$ $D_{36}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_8$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_{27}$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
43-Sylow subgroup: $P_{ 43 } \simeq$ $C_{43}$

Subgroup diagram and profile

Series

Derived series $C_{215}\times D_{216}$ $\rhd$ $C_{108}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{215}\times D_{216}$ $\rhd$ $C_{215}\times D_{108}$ $\rhd$ $C_{23220}$ $\rhd$ $C_{11610}$ $\rhd$ $C_{5805}$ $\rhd$ $C_{1935}$ $\rhd$ $C_{645}$ $\rhd$ $C_{215}$ $\rhd$ $C_{43}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{215}\times D_{216}$ $\rhd$ $C_{108}$ $\rhd$ $C_{54}$ $\rhd$ $C_{27}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{430}$ $\lhd$ $C_{860}$ $\lhd$ $C_{1720}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $23865 \times 23865$ character table is not available for this group.

Rational character table

The $72 \times 72$ rational character table is not available for this group.