Subgroup ($H$) information
| Description: | $C_{43}\times D_{36}$ |
| Order: | \(3096\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 43 \) |
| Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Exponent: | \(1548\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 43 \) |
| Generators: |
$b^{23220}, b^{10320}, b^{30960}, b^{1080}, b^{11610}, ab^{4945}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{215}\times D_{216}$ |
| Order: | \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \) |
| Exponent: | \(46440\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(2612736\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_{126}.C_6^2.C_2^2$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |